

		Ce	entre	Num	ber

2021 YEAR 12

Mathematics Advanced

Trial Examination

Date: Exam block (18/8-26/8)

General Instructions:

- Reading time 10 minutes
- Working time 3 hours
- Write using blue or black pen
- NESA approved calculators may be used
- For questions in Section II, show relevant mathematical reasoning and/or calculations
- · No white-out may be used

Total Marks: 100

Section I - 10 marks

• Allow about 15 minutes for this section

Section II - 90 marks

Allow about 2 hours 45 minutes for this section

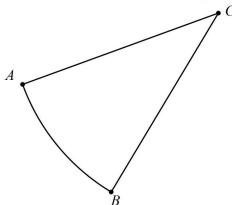
Q	Marks
MC	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
31	
32	
Total	

Student Number

This question paper must not be removed from the examination room.

This assessment task constitutes 0% of the course.

Section I


10 marks

Allow about 15 minutes for this section.

Use the multiple-choice sheet for Question 1-10

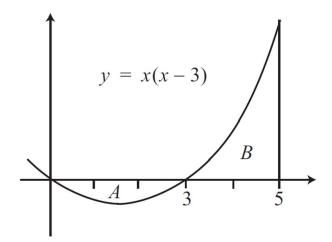
- 1 Which of the following is equivalent to $\frac{1}{\sqrt{5}-2}$?
 - $(A) \qquad \frac{\sqrt{5}-2}{5}$
 - (B) $\sqrt{5} + 2$
 - (C) $\sqrt{5}-2$
 - (D) $\sqrt{5} 2$
- The derivative of e^{5x^2} is:
 - (A) $2e^{5x^2}$
 - (B) $10e^{5x^2}$
 - (C) $2xe^{5x^2}$
 - (D) $10xe^{5x^2}$

The sector *ABC* is shown in the diagram below. The length of arc *AB* is $\frac{6\pi}{5}$ units and the length of *BC* is 4 units.

The area of the sector is closest to which of the following?

- (A) 0.942 units²
- (B) 6.472 units²
- (C) 7.540 units²
- (D) 15.080 units²
- 4 Which of the following expressions is equivalent to $4 + \log_2 x^2$?
 - $(A) \qquad 8 + 2\log_2(x)$
 - (B) $\log_2(16 + x^2)$
 - (C) $2\log_2(4x)$
 - (D) $\log_2(2x^2)$

- At a point P(k-2, y) on $f(x) = kx^2 kx k^2$ the gradient of the tangent is 3k 8. What is the value of k?
 - (A) 2
 - (B) 1
 - (C) 0
 - (D) -1
- 6 Consider the bivariate data given in the table below.


x	1.5	1.6	1.5	1.7	1.8
у	2.4	2.6	2.5	2.8	М

Given that the correlation coefficient is $r \approx 0.95$ to 2 decimal places, which of the following could be the value of M?

- (A) M = 3.1
- (B) M = 3.2
- (C) M = 3.3
- (D) M = 3.4
- 7 Evaluate:

$$\int_0^3 \frac{2x}{x^2 + 9} dx$$

- (A) $\frac{1}{2} \ln 2$
- (B) ln 2
- (C) 2 ln 2
- (D) ln 18

- (A) $4\frac{1}{6}$
- (B) $4\frac{1}{2}$
- (C) $8\frac{2}{3}$
- (D) $13\frac{1}{6}$

9 Let $f(x) = x^3 - (m^2 - 4)x + 1$.

For which of the values of m below is f(x) many-to-one?

- (A) m = -4
- (B) m = -2
- (C) m = 1
- (D) m = 2

Carol, Zachary, and Matilda are in a class together and they all completed the same test.

They received their result as shown in the table below.

Name	Mark	z-score (2 d.p.)
Carol	32	0.46
Zachary	31	0.35
Matilda	30	0.12

After comparing results, they realised that one of the scores must be incorrect. Which of the following could be a correction to the results?

- (A) Carol's mark should be corrected to 33
- (B) Matilda's mark should be corrected to 29
- (C) Matilda's z-score should be corrected to 0.22
- (D) Zachary's z-score should be corrected to 0.38

End of Section I

Section II

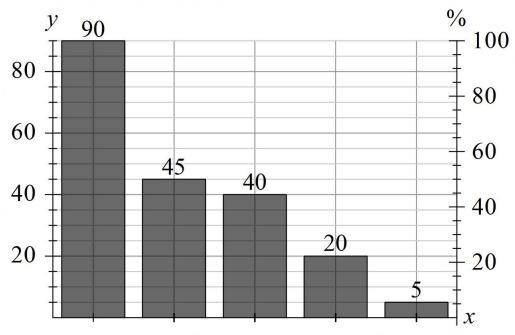
90 marks

Allow about 2 hours and 45 minutes for this section.

In Questions 11-32, your response should include relevant mathematical reasoning and/or calculations.

Que	stion 11 (2 marks)	
If <i>f</i> ($f(x) = \frac{3x}{x^2 - 2}, \text{ find } f'(x).$	2
Que	stion 12 (3 marks)	
Find	the primitives of the following functions:	
(a)	$f(x) = x^3 + \frac{2}{x^2}$,
(b)	$g(x) = \cos(2x + 1)$	-

Question 13 (5 marks)


The random variable X has the probability distribution given in the following table.

X	1	2	3	4	5	6
P(X = x)	0.15	0.2	0.35	0.05	0.2	0.05

(a)	Find $E(X)$.	1
(b)	Calculate the variance of X .	2
(c)	Find $P(X > 2 X \le 5)$.	2

Question 14 (2 marks)

A pareto chart below has been partially completed. The bar chart is complete, however, the line graph has not been included.

Complete the pareto chart. You may use the space below for working.

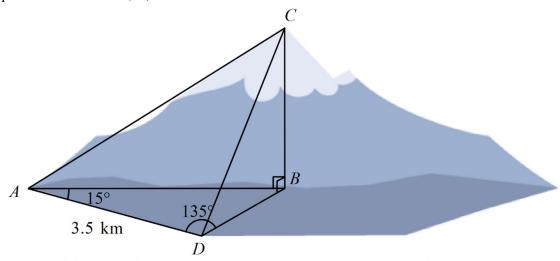
 	 	•••••	 	 	 	 	 	 	

Question 15 (4 marks)

places.	$\frac{1}{x}$ and the x-axis between $x = 1$ and $x = 4$. Give your answer to 4 deci
	er this approximation is an underestimate or an overestimate of the true
	er this approximation is an underestimate or an overestimate of the truesketch to support your explanation.
area. Include a	
area. Include a	sketch to support your explanation.

Question 16 (6 marks)

In a music class of 28, 17 students play the violin (V) and 13 students play the clarinet (C). Five students play neither of these musical instruments.


(a)	Draw	v a Venn diagram to represent these events using the labels V and C .	1
(b)		ident is chosen at random from the class. the probability that the student plays:	
	(i)	Both the violin and the clarinet	1
	(ii)	Either the violin or the clarinet	1
	()		

(c)	A duet is a performance of two students, one playing the violin and the other playing the clarinet.	3
	If two students are chosen at random from the class, what is the probability that they can play a duet together?	

2

Question 17 (3 marks)

A novice hiker is trying to determine whether she should begin her hike up a mountain from point A or point D, 3.5 km away. She measures the angle of inclination from point A to the peak of the mountain, C, to be 36°.

Assume points A, B and D are on a level plane, where B is the point directly below the peak of the mountain. $\angle DAB$ is 15° and $\angle BDA$ is 135°.

(a) Show that $AB = \frac{3.5 \sin 135^{\circ}}{\sin 30^{\circ}}$

(b) Hence, or otherwise, find the angle of inclination from point *D* to the peak of the mountain. Give your answer to the nearest minute.

Question 18 (3 marks)

Charlie is applying for membership at a new golf club that has a strong reputation. The scores of his current club have a lower quartile of 110 and an upper quartile of 118 and Charlie's score is not an outlier.
Given that the club he plans to join has scores with a lower quartile of 90 and an upper quartile of 106, can you assure Charlie that his score will not be an outlier in his new club? Justify your answer with appropriate calculations.

3

Question 19 (6 marks)

Mani is a fruit grower. After his oranges are picked, they are sorted by a machine, according to size. The distribution of the diameter, in centimetres, of oranges is modelled by a continuous random variable, *X*, with probability density function given below.

$$f(x) = \begin{cases} -\frac{3x^3}{4} + 15x^2 - 99x + 216 & 6 \le x \le 8\\ 0 & \text{Otherwise} \end{cases}$$

	vise, find the probability	that a randomly selec	cted orange has a diar	neter
	n			
Hence or other greater than 7cm	n.			
	n.			
greater than 7cm	n.			
greater than 7cm				
greater than 7cm				
greater than 7cm				
greater than 7cm				

(c)

Find the mode of the distribution.	

2

Question 20 (5 marks)

The time, X minutes, taken by Fred to install a satellite dish may be assumed to be normally distributed, with a mean of 134 and a standard deviation of 16.

The table below provides some values of the probabilities for the standard normal distribution. i.e. $\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \phi(t) dt$

i.e.
$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \phi(t) dt$$

_					first deci	mal place	?			
Z	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0.	0.500	0.540	0.579	0.618	0.655	0.692	0.726	0.758	0.788	0.816
1.	0.841	0.864	0.885	0.903	0.919	0.933	0.945	0.955	0.964	0.971
2.	0.977	0.982	0.986	0.989	0.992	0.994	0.995	0.997	0.997	0.998
3.	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Calculate $P(X < 150)$.
Fred's company policy states that safe installations require a minimum of a minutes to complete. Fred has been informed that 5.5% of his installation times do not meet this minimum standard.
Find the value of a .

Question 21 (2 marks)

Given the functions $f(x) = \frac{1}{x-1}$ and $g(x) = e^x$, state the domain of $f(g(x))$. Give your answer in interval notation .	2

Question 22 (8 marks)

Consider the function $y = 2xe^{\frac{x}{2}}$.

Find the co					
1				 	
1					
		points of infle			
Find coordi	nates of any p	points of infle	ection.		
Find coordi	nates of any p	points of infle	ection.	 	
Find coordi	nates of any p	points of infle	ection.	 	
Find coordi	nates of any p	points of infle	ection.	 	
Find coordi	nates of any p	points of infle	ection.	 	
Find coordi	nates of any p	points of infle	ection.	 	
Find coordi	nates of any p	points of infle	ection.	 	
Find coording	nates of any p	points of infle	ection.		
Find coording	nates of any p	points of infle	ection.		

(c)	For what values of x is the curve concave down?	1

(d) Draw a sketch of the curve, showing all critical points.

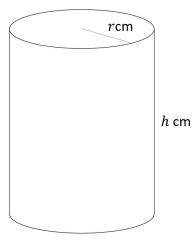
2

3

Question 23 (3 marks)

The effectiveness of a drug is measured by its ability to reduce the number of bacteria in a culture over time. The culture is reduced according to the model $N = N_0 e^{-kt}$ where N is the number of bacteria and t is the time since the drug was administered in minutes.

A drug is tested in a culture initially with 1200 bacteria, which reduces to 200 in 6 minutes. How many bacteria are left in the culture after 3 minutes?


Question 24 (2 marks)

Given that $\sin \theta = \frac{6}{2}$	$\frac{6+\sqrt{2}}{2\sqrt{19}}$ and θ is obtuse, find the exact value of $\tan \theta$ in simplest form.	
		•

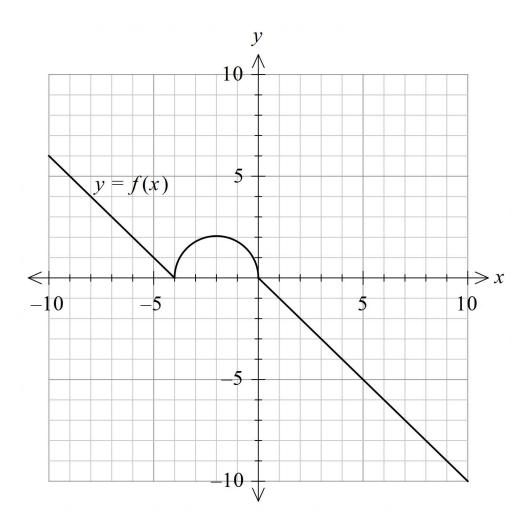
2

Question 25 (5 marks)

A tin can with a closed lid is made in the shape of a cylinder as shown below. The lid has a radius of r cm and a height of h cm.

The volume of the can is 192π cm³.

(a) Show that the total surface area of the can, $A ext{ cm}^2$, is given by:


$A=2\pi$	(2 .	192\
$A=2\pi$	$(r^2 \dashv$	$\vdash \overline{r}$

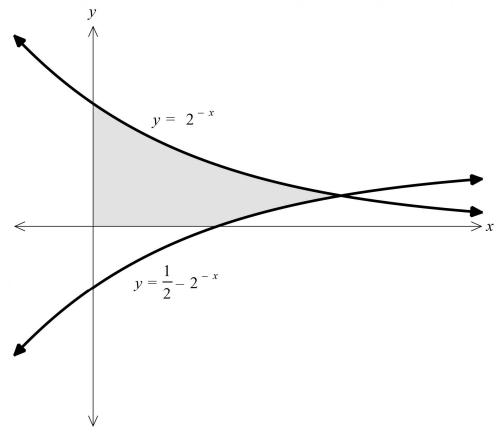
(1 /	

(b)	Find the value of r for which the tin has a minimum surface area.

3

(a) The graph of y = f(x) is given below. On the same set of axes, sketch y = f(2(x + 2)).

(b)	Hence, determine the number of solutions of the equation $f(2(x+2)) = x+3 $.]


Do NOT write in this area.

Question 27 (4 marks)

	(a)	Differentiate $\ln(\cos(2x))$.	2
	(b)	Hence, or otherwise, evaluate: $\int_0^{\frac{\pi}{6}} \tan(2x) dx$	2
ָם מ			
Wille III tills alea			
MILE			
<u>ב</u>			
1			

Question 28 (5 marks)

The diagram below shows the graphs of $y = 2^{-x}$ and $y = \frac{1}{2} - 2^{-x}$ and the point of intersection.

(a) By solving simultaneously, show that the point of intersection occurs when x = 2.

(b)	Hence, or otherwise, find the shaded area of the region bounded by the x -axis, the y -axis and the two curves, correct to 4 decimal places.	4

Question 29 (4 marks)

(a)	Show that $\log_a b = \frac{1}{\log_b a}$	1

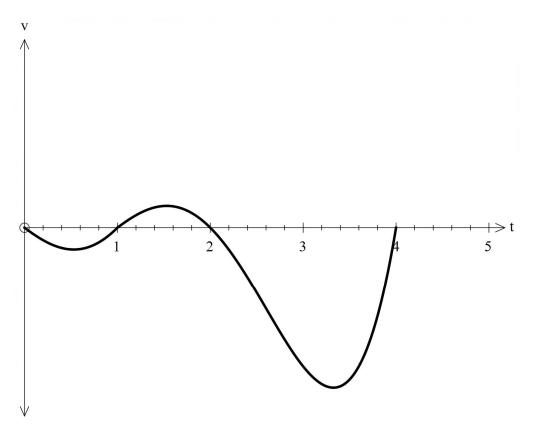
(b)	Hence, solve the equation		
		$6\log_x 2 + \log_2 x - 5 = 0$	

3

Question 30 (5 marks)

A weight is attached to a spring that is connected to the ceiling. The weight is pulled away from the ceiling and then released so that it bounces up and down.

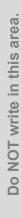
Let the distance of the weight from the ceiling be x metres. The spring stretches and contracts such that x varies sinusoidally with time, between 1.2 metres and 1.8 metres. It takes 1 second for the weight to go from its highest point to its lowest point.

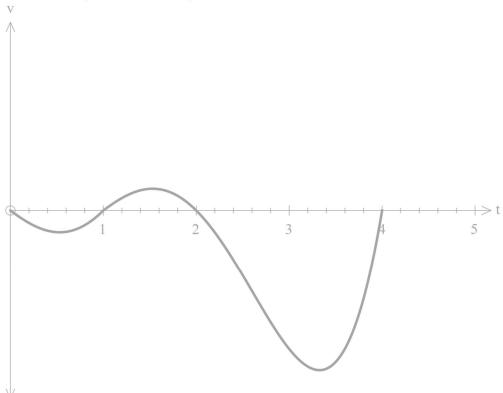

The motion of the weight can be modelled using a sine wave of the form:

$$x = a\sin(bt + c) + d$$

How far from the ceiling is the weight 2.7 seconds after it is at a high point?		

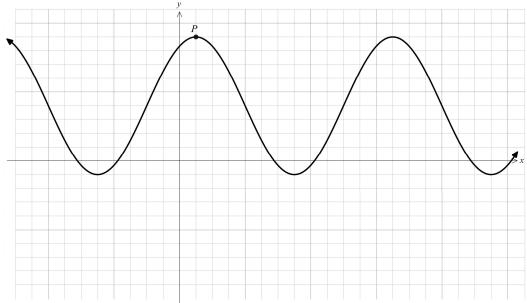
Question 31 (6 marks)


The velocity of a particle moving in a straight line is shown below. The particle starts at the origin.



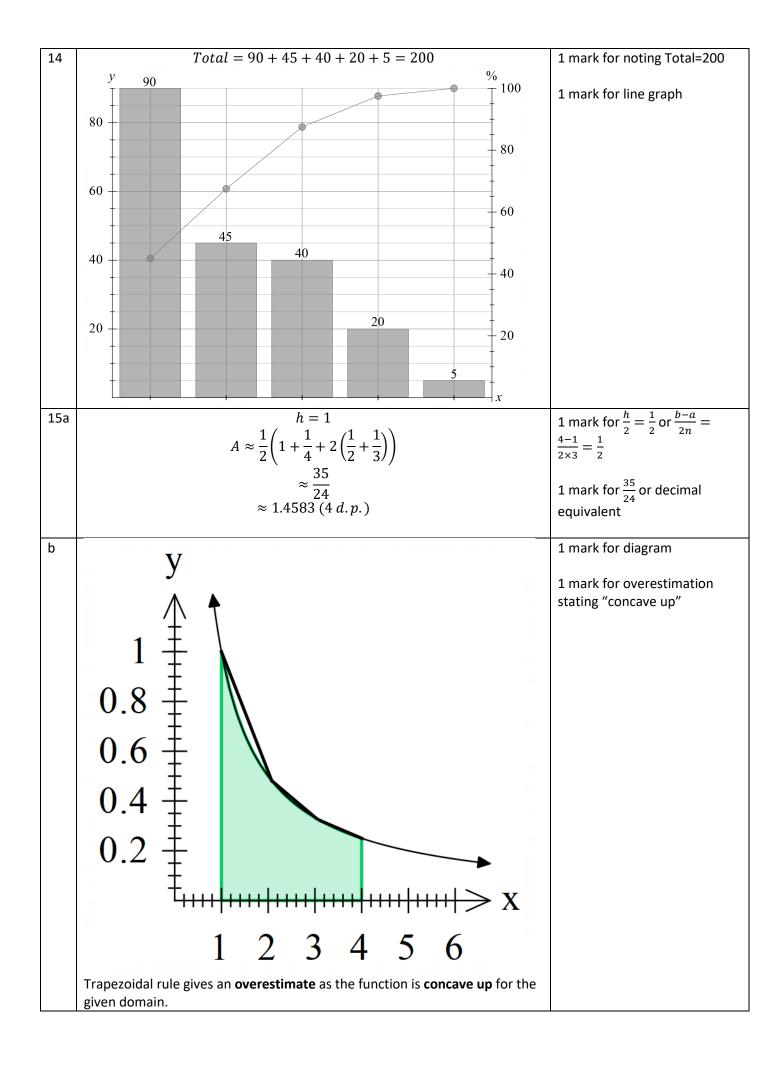
(a) When does the particle return to the origin?

(b) When is the particle furthest from the origin?


(c) When is the particle experiencing the greatest acceleration?

Question 32 (4 marks)

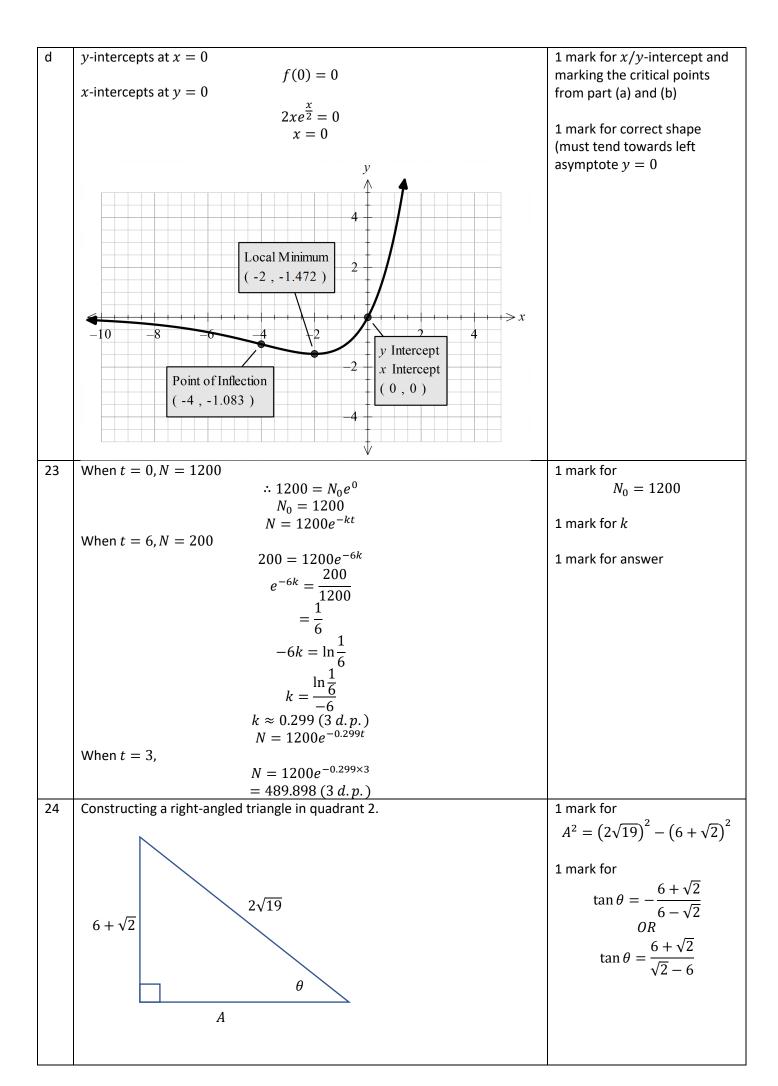
The graph of the function $y = \cos(2a(x - b)) + c$ is shown below, where a, b and c are constants. Point P has coordinates (b, c + 1).


On the same set of axes, sketch:

$$y = -c\sin(3ax - 3ab)$$

You may use the space below for working.

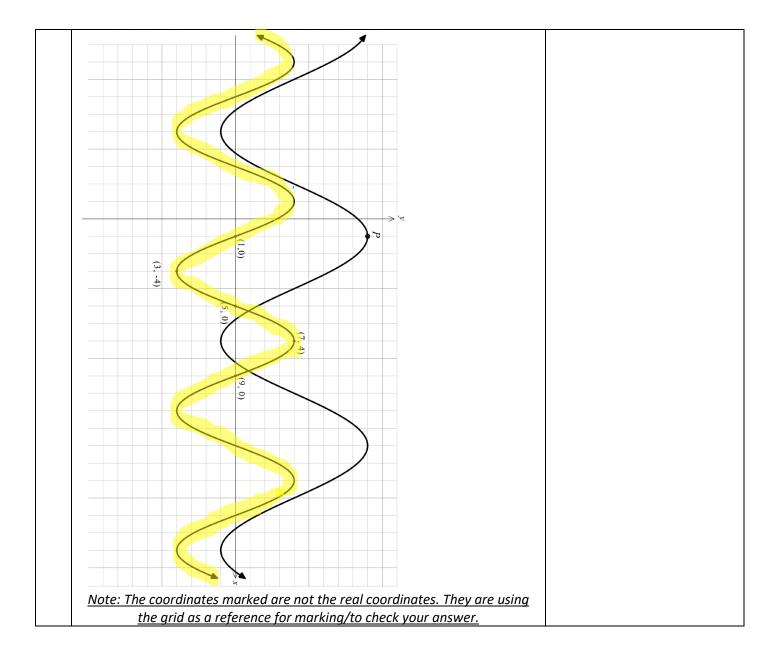
Q	Solution	Marking Guidelines
1	В	
	$\frac{1}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2}$	
	$\sqrt{5}-2$ $\sqrt{5}+2$	
	$=\frac{\sqrt{3+2}}{5-4}$	
	$ \begin{aligned} \sqrt{3} &= 2 & \sqrt{3} + 2 \\ &= \frac{\sqrt{5} + 2}{5 - 4} \\ &= \frac{\sqrt{5} + 2}{1} \end{aligned} $	
	= 1	
	$=\sqrt{5}+2$	
2	D	
	$\frac{d}{dx}(e^{5x^2})$ $= e^{5x^2} \times \frac{d}{dx}(5x^2)$ $= e^{5x^2} \times 10x$	
	$\frac{dx}{dx}$	
	$\equiv e^{sx} \times \frac{1}{dx} (5x^2)$	
	$= e^{5x} \times 10x$ $= 10xe^{5x^2}$	
3	$= 10xe^{5x^2}$ $l = r\theta = \frac{6\pi}{5}$	
	$t = t\theta = \frac{1}{5}$	
	$r = 4$ $A = \frac{1}{2}r^{2}\theta = \frac{1}{2}(r\theta) \times r$ $= \frac{1}{2} \times \frac{6\pi}{5} \times 4$ $= \frac{12\pi}{5}$	
	$A = \frac{1}{2}r^{2}\theta = \frac{1}{2}(r\theta) \times r$	
	$=\frac{1}{2}\times\frac{6\pi}{5}\times4$	
	$\frac{2}{2}$ $\frac{12\pi}{2}$	
	= 7.540 (3 d.p.)	
	= 7.340 (5 a.p.)	
4	С	
	$4 + \log_2 x^2 = 4 \log_2 2 + \log_2 x^2$	
	$= \log_2 2 + \log_2 x$ $= \log_2 2^4 + \log_2 x^2$	
	$= \log_2 16 + \log_2 x^2$	
	$= \log_2 16x^2$ $= \log_2 (4x)^2$	
	$= 2\log_2(4x)$ $= 2\log_2 4x$	
5	A	
	f'(x) = 2kx - k f'(k-2) = 2k(k-2) - k	
	$=2k^2-4k-k$	
	$=2k^2-5k$	
	$2k^2 - 5k = 3k - 8$ $2k^2 - 8k + 8 = 0$	
	$2k^2 - 8k + 8 = 0$ $k^2 - 4k + 4 = 0$	
	$(k-2)^2 = 0$	
	k-2=0 $k=2$	
	n – 2	
6	D	
7	B $I = [\ln(x^2 + 9)]_0^3$	
	$= \ln 18 - \ln 9$	
	$= \ln \frac{18}{9}$	
	$\begin{array}{c} - m \\ 9 \\ = \ln 2 \end{array}$	
8	D = 1112	
	Approximating using triangles.	


	3 0	T
	When $x = \frac{3}{2}$, $y = -\frac{9}{4}$	
	Area A $\approx \frac{1}{2} \times 3 \times \frac{9}{4}$	
	$\approx \frac{27}{8} = 3\frac{3}{8}$	
	When $x = 5, y = 10$	
	Area B $\approx \frac{1}{2} \times 2 \times 10$	
	≈ 10	
	Total area = $A + B$	
	$\approx 3\frac{3}{8} + 10$ $\approx 13\frac{3}{8}$	
	8 2	
	$\approx 13\frac{3}{2}$	
	8	
	Δ	
9	A	
	Many-to-one occurs when the cubic has multiple stationary points.	
	Therefore, discriminant of the first derivative is greater than zero.	
	$f'(x) = 3x^2 - (m^2 - 4)$	
	$\Delta = b^2 - 4ac$	
	$= 0 + 12(m^2 - 4)$	
	$\Delta > 0$, when $12(m^2 - 4) > 0$	
	$m^2 - 4 > 0$	
	(m+2)(m-2) > 0	
	m > 2 or $m < -2$	
	Therefore, $m=-4$ is the correct value.	
10	В	
11	Quotient rule	1 mark for applying quotient
	u = 3x, u' = 3	rule
	$v = x^2 - 2, v' = 2x$	
	$y' - \frac{3(x^2 - 2) - 3x \times 2x}{2}$	1 mark for correct
	$y' = \frac{3(x^2 - 2) - 3x \times 2x}{(x^2 - 2)^2}$	substitutions
	$3x^2 - 6 - 6x^2$	
	$=\frac{1}{(x^2-2)^2}$	
	$-3x^{2}-6$	
	$=\frac{1}{(x^2-2)^2}$	
12a	$f(x) = x^3 + 2x^{-2}$	1 mark for integral
	x^4	1 mark for +C
	$F(x) = \frac{1}{4} - 2x^{-1} + C$	
b	$\sin(2x+1)$	No mark lost for +C
	$= \frac{-3x^2 - 6}{(x^2 - 2)^2}$ $= f(x) = x^3 + 2x^{-2}$ $F(x) = \frac{x^4}{4} - 2x^{-1} + C$ $G(x) = \frac{\sin(2x + 1)}{2} + C$	
13a	$E(X) = 1 \times 0.15 + 2 \times 0.2 + 3 \times 0.35 + 4 \times 0.05 + 5 \times 0.2 + 6 \times 0.05$	
	= 3.1	
b	$= 3.1$ $E(X^2) = 1^2 \times 0.15 + 2^2 \times 0.2 + 3^2 \times 0.35 + 4^2 \times 0.05 + 5^2 \times 0.2$	1 mark for $E(X^2) = 11.7$ or
	$+6^2 \times 0.05$	$E(X)^2 = 9.61$
	= 11.7	
	$E(X)^2 = 3.1^2$	1 mark for $Var(X) = 2.09$
	= 9.61	
	Var(X) = 11.7 - 9.61	ECF allowed from part (a)
	= 2.09	
С	$P(X > 2 X \le 5) = \frac{0.35 + 0.05 + 0.2}{0.15 + 0.2 + 0.35 + 0.05 + 0.2}$	1 mark for correct numerator
	0.15 + 0.2 + 0.35 + 0.05 + 0.2	or denominator
	$=\frac{0.6}{}$	1 mark for simplified answer
	0.95	
	$= \frac{0.05}{0.95} \\ = \frac{12}{19}$	
	19	

16a		Must give all correct values
	V C 7 6	
bi	$\frac{7}{39} = \frac{1}{4}$	ECF allowed
ii	$\frac{23}{28}$	ECF allowed
С	Violin Only Violin and Clarinet Clarinet Violin and Clarinet Only Violin and Clarinet Violin and Clarinet Violin and Clarinet Violin and Clarinet Only Violin and Clarinet Violin and Clarinet P(duet) = $P(V, C) + P(V, both) + P(C, V) + P(C, both) + P(both, V) + P(both, C) + P(both, both)$ $= (2 \times (P(V, C) + P(V, both) + P(C, both)) + P(both, both)$ $= 2 \times \left(\frac{10}{28} \times \frac{6}{27} + \frac{10}{28} \times \frac{7}{27} + \frac{6}{28} \times \frac{7}{27}\right) + \left(\frac{7}{28} \times \frac{6}{27}\right)$ $= \frac{193}{378}$ $= 51.06\%$	3 marks for correct answer 2 marks for applying addition and multiplication rules with minor errors 1 mark for finding one possible duet or partially correct tree diagram
17a	$\angle ABD = 180 - 15 - 135$ $= 30^{\circ}$ $\frac{AB}{\sin 135} = \frac{3.5}{\sin 30}$ $AB = \frac{3.5 \sin 135^{\circ}}{\sin 30^{\circ}}$ $\approx 4.950 (3 d. p.)$	Must show adequate working.
b	$\tan 36 = \frac{CB}{AB}$ $CB = \tan 36 \times 4.950$ ≈ 3.596 $\frac{BD}{\sin 15} = \frac{3.5}{\sin 30}$	1 mark for CB or stating $\theta = \tan^{-1}\left(\frac{CB}{BD}\right)$ 1 mark for final answer
	$BD = \frac{3.5 \sin 15}{\sin 30}$ ≈ 1.812	No penalty for rounding.

	CD	10
	$\tan \angle CDB = \frac{CB}{BD}$	
	BD (CB)	
	$\angle CDB = \tan^{-1} \left(\frac{CB}{BD} \right)$	
	$\frac{1}{10000000000000000000000000000000000$	
	$= \tan^{-1} \frac{3.596}{1.812}$	
	$\approx 63^{\circ}16'(Nearest minute)$	
18	IQR = 118 - 110 = 8	1 mark for finding IQR of
	$1.5 \times IQR = 12$	either club
	$Upper\ bound = 118 + 12 = 130$	1 mark for finding range of
	Lower bound = 110 - 12 = 98	charlie's score between 98
	∴ Charlie's score is between 98 and 130	and 130
	For the new club	1 mark for comparing charlie's
	IOR = 106 - 90 = 16	score to the bounds of the
	$1.5 \times IQR = 24$	new club AND concluding
	$Upper\ bound = 106 + 24 = 130$	statement
	Lower bound = $90 - 24 = 66$	
	:.Charlie is not an outlier in the new club as he is not outside the bounds for	
	the new club.	
19a	$3x^3$	1 mark for stating integrals
	$f(x) = -\frac{3x^3}{4} + 15x^2 - 99x + 216$	
		1 mark for final cdf
	$F(x) = \int_{6}^{x} \frac{3t^{3}}{4} + 15t^{2} - 99t + 216 dt$	
	$\begin{bmatrix} 3 \\ 4 \end{bmatrix}$	
	$= \left[\frac{3}{16}t^4 + 5t^3 - \frac{99}{2}t^2 + 216t \right]_6^x$	
	3 .4 . 5.3 992 . 216 251	
	$= -\frac{3}{16}x^4 + 5x^3 - \frac{99}{2}x^2 + 216x - 351$ $P(X > 7) = 1 - P(X < 7)$	
b		2 marks for final answer
	=1-F(7) 5	1 mark for $F(7) = \frac{5}{16}$
	= I - -	10
	- 1 16 11	
	$=\frac{11}{16}$	
С	Mode occurs at global maximum (i.e. at turning points (stationary points) or	1 mark for checking end points
	at the ends of the domain)	
	f(6) = 0	1 mark for checking finding
	f(8) = 0	$x = \frac{22}{3}$ and checking $f\left(\frac{22}{3}\right)$
	To find stationary points:	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	$f'(x) = -\frac{3}{4}(3x^2 - 40x + 132)$	
	$f'(x) = 0$ when $3x^2 - 40x + 132 = 0$	
	(3x - 22)(x - 0) = 0 22	
	$(3x - 22)(x - 6) = 0$ $x = 6 \text{ or } x = \frac{22}{3}$	
	f(6) = 0	
	$f\left(\frac{22}{3}\right) = \frac{8}{9}$	
	\therefore Mode of the distribution is $\frac{22}{3}$	
20a	150 124	1 mark for z=1
	150 - 134	I I I I I I I I I I I I I I I I I I I
	$z = \frac{150 - 134}{16} = 1$	1 mark for 84.1% from table
	$z = \frac{150 - 134}{16} = 1$ $P(X < 150) = P(Z < 1)$	
	P(X < 150) = P(Z < 1) = 0.841 (from table)	1 mark for 84.1% from table
	P(X < 150) = P(Z < 1)	1 mark for 84.1% from table

	= 68% + 13.5% + 2.35% + 0.15%	
	= 84% (empirical rule)	
b	P(X < a) = 0.055	1 mark for $1 - 0.055 = 0.945$
	P(X > a) = 1 - 0.055	1 mark for $z = -1.6$
	= 0.945	1 mark for $a = 108.4$
	From the table $P(Z < 1.6) = 0.945$	
	And hence $P(Z > -1.6) = 0.945$ Therefore, a corresponds to a z-score of -1.6	
	$a = 134 - 1.6 \times 16$	
	= 108.4	
21	$f(g(x)) = \frac{1}{e^x - 1}$	1 mark for
	Restrictions occur at: $e^x - 1$	$x \neq 0$
	$e^x - 1 \neq 0$	1 mark for interval notation
	$e^x \neq 1$	1 mark for interval notation
	$x \neq 0$	
	Hence, the domain of $f(g(x))$ is $(-\infty, 0) \cup (0, \infty)$.	
22a	Hence, the domain of $f(g(x))$ is $(-\infty,0) \cup (0,\infty)$. $f(x) = 2xe^{\frac{x}{2}}$	1 mark for derivative
	$\frac{x}{2}$, $\frac{x}{2}$, $\frac{1}{2}$	1 mark for $x = -2$ and $y =$
	$u = 2x, u' = 2, v = e^{\frac{x}{2}}, v' = \frac{1}{2}e^{\frac{x}{2}}$	$\frac{-4}{e} \approx -1.47$
	$f'(x) = 2e^{\frac{x}{2}} + xe^{\frac{x}{2}}$	1 mark for checking nature
	$= (2+x)e^{\frac{x}{2}}$	using table or second
	f'(x) = 0, when	derivative
	2 + x = 0	
	x = -2	
	$f(-2) = \frac{-4}{e} \approx -1.47$	
	<u>x</u> -3 -2 0	
	f'(x) -0.22 0 2	
	∴ Minimum turning point at $\left(-2, \frac{-4}{e}\right)$	
b	$f'(x) = (2+x)e^{\frac{x}{2}}$	1 mark for $x = -4$
	$u = (2 + x), u' = 1, v = e^{\frac{x}{2}}, v' = \frac{1}{2}e^{\frac{x}{2}}$	1 mark for checking change in
	$f''(x) = e^{\frac{x}{2}} + \frac{2+x}{2}e^{\frac{x}{2}}$	concavity using a table or
	<u>u</u>	equivalent
	$=e^{\frac{x}{2}}\left(1+\frac{2+x}{2}\right)=e^{\frac{x}{2}}\left(\frac{4+x}{2}\right)$	
	f''(x) = 0 when	
	4 + x = 0	
	x = -4	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	f''(x) -0.041 0 0.11	
	<u> </u>	
	8	
	$f(-4) = -\frac{8}{e^2} \approx -1.083$	
	∴ Point of inflection at $(-4, -\frac{8}{e^2})$	
	I officed inffection at $(-4, -\frac{1}{e^2})$	
С	x < -4	
C	λ \ 1	



$A^{2} = (2\sqrt{19})^{2} - (6 + \sqrt{2})^{2}$ $= 76 - (36 + 12\sqrt{2} + 2)$	
$= 76 - (36 + 12\sqrt{2} + 2)$	
$=76-(38+12\sqrt{2})$	
$=38-12\sqrt{2}$	
$=36-12\sqrt{2}+2$	
$=\left(6-\sqrt{2}\right)^2$	
$A = 6 - \sqrt{2}$	
$6+\sqrt{2}$	
$\therefore \tan \theta = -\frac{6 + \sqrt{2}}{6 - \sqrt{2}}$	
OR	
$\tan \theta = \frac{6 + \sqrt{2}}{\sqrt{2} - 6}$	
	100
Given that $V=192\pi=\pi r^2 h$ 1 mark for substituting into volume formula	3192π
$h = \frac{192\pi}{\pi r^2}$ $= \frac{192}{r^2} $ (1) into volume formula $1 mark for substituting surface area and finding the following properties of the properti$	
$-\frac{192}{1}$ 1 mark for substituting	into
	_
For surface area of a cylinder $A = 2\pi r^2 + 2\pi rh$ answer	
$= 2\pi(r^2 + rh) (2)$ Substituting (1) in (2)	
$A = 2\pi(r^2 + r\left(\frac{192}{r^2}\right))$	
$=2\pi\left(r^2+\frac{192}{r}\right)$ $A=2\pi\left(r^2+\frac{192}{r}\right)$ 1 mark for derivative 1 mark for	
$\frac{-2n(r+r)}{r}$	
b $A = 2\pi \left(r^2 + \frac{192}{r}\right)$ 1 mark for derivative 1 mark for	
$A = 2\pi(r^2 + 192r^{-1})$ $r = \sqrt[3]{96}$	
$A' = 2\pi(2r - 192r^{-2})$	
$A'' = 2\pi(2 + 384r^{-3})$ 1 mark for proving nat	ure
using table of second	
For stat points $A'=0$ derivative	
$2r - \frac{192}{r^2} = 0$	
$2r = \frac{192}{r^2}$	
r^2	
$ 2r^3 = 192 r^3 = 96 $	
$r = \sqrt[3]{96}$	
When $r = \sqrt[3]{96}$,	
$A^{\prime\prime} = 2\pi \left(2 + \frac{384}{r^3}\right)$	
$=2\pi\left(2+\frac{384}{96}\right)$	
A'' > 0	
$\therefore Minimum turning point when r = \sqrt[3]{96}$	
Hence, the minimum surface area occurs when	
$r = \sqrt[3]{96}$	
26a Transformations: 2 marks for correct ske	etch
1. Horizontal dilation by ½	
2. Horizontal translation left by 2 1 mark if any one of the	ie
Transformation of Key Points: following: - Function has be)een
Original Point After Dilation After dilated correct	
Translation - Function has b	•
(-10,6) $(-5,6)$ $(-7,6)$ translated con-	rectly

	(-4,0)	(-2,0)	(-4,0)	- A section	of the
	(-2,2)	(-1,2)	(-3,2)	function h	
	(0,0)	(0,0)	(-2,0)	transform	ed correctly
	(10, -10)	(5, -10)	(3,-10)		
			y		
				1	
			+		
			+		
	y = y	f(x) 5	+		
			+		
		V		x	
	-10	-5	5		
			7		
		_5			
		10			
		-10	V		
b		3	solutions	ECF allowed from	•
27a	Let $u = \cos 2x$	21'	$=-2\sin 2x$	2 marks for final a 1 mark for single	
			$y = \ln u$	Tillark for Single	IIIStake
			$y' = \frac{u'}{u}$		
			u $-2\sin 2x$		
		=	$\frac{1}{\cos 2x}$		
b			$\frac{-2 \tan 2x}{c^{\frac{\pi}{2}}}$	2 marks for final a	nswer in
		I =	$\int_0^{\overline{6}} \tan(2x) dx$	exact form	
				$-\frac{1}{2}\left(\ln\left(\frac{1}{2}\right)\right)$ OR $\frac{1}{2}$	ln 2
		$=-\frac{1}{2}\int$	$\int_{0}^{\frac{\pi}{6}} -2\tan(2x) dx$	1 mark for correct	tintegration
		$=-\frac{1}{2}$	$\frac{\pi}{6} \left[\ln(\cos(2x)) \right]_0^{\frac{\pi}{6}}$	ECF allowed from	
			$\left(\cos\frac{\pi}{3}\right) - \ln(\cos 0)$		
			$\left(\ln\left(\frac{1}{2}\right) - \ln(1)\right)$		
		= -	$-\frac{1}{2}\left(\ln\left(\frac{1}{2}\right)\right)$		
			2\\\\2// 1 ₁₋₂		
20-		1	$=\frac{1}{2}\ln 2$	NA	
28a		$\frac{1}{2}$ -	$-2^{-x} = 2^{-x}$ $= 2 \times 2^{-x}$ $\frac{1}{2} = 2^{1-x}$	Must solve simult	aneously
		$\frac{1}{2}$	$=2\times2^{-x}$		
	I	2			
			1 $21-x$		

	$2^{-1} = 2^{1-x}$	
	-1 = 1 - x	
b	$x = 2$ For the <i>x</i> -intercept of $y = \frac{1}{2} - 2^{-x}$	1 mark for finding <i>x</i> -intercept
	1	1 mark for expressing area
	$\frac{1}{2} - 2^{-x} = 0$	using the correct integrals 1 mark for correct integrals
	$\frac{1}{2} = 2^{-x}$ $2^{-1} = 2^{-x}$	1 mark for final answer
		(no penalty for rounding error)
	x = 1	
	Hence, $A = \int_0^2 2^{-x} dx - \int_1^2 \frac{1}{2} - 2^{-x} dx$	
	$= -\left[\frac{2^{-x}}{\ln 2}\right]_0^2 - \left[\frac{x}{2} + \frac{2^{-x}}{\ln 2}\right]_1^2$	
	$=-\left(\frac{1}{4 \ln 2} - \frac{1}{\ln 2}\right)$	
	$-\left(\left(\frac{2}{2} + \frac{1}{4\ln 2}\right) - \left(\frac{1}{2} + \frac{1}{2\ln 2}\right)\right)$	
	$=\frac{1}{\ln 2}-\frac{1}{2}$	
	$= 0.9427 \text{ units}^2$	
29a	$RTP: \log_a b = \frac{1}{\log_b a}$	Must use proper setting out
	$LHS = \log_a b$	for proof.
	$=\frac{\log_b b}{1}$	
	$\log_b a$	
	$= \frac{\log_b b}{\log_b a}$ $= \frac{1}{\log_b a}$	
	= RHS	1.5
b	$6\log_x 2 + \log_2 x - 5 = 0$	1 mark for applying part (a)
	$\frac{6}{\log_2 x} + \log_2 x - 5 = 0$	1 mark for creating quadratic
	$6 + (\log_2 x)^2 - 5\log_2 x = 0$	
	$ Let u = \log_2 x u^2 - 5u + 6 = 0 $	1 mark for solutions in x
	u = 3 or u = 2	
	For $\log_2 x = 3$ $x = 2^3$	
	$x = 2^{-}$ $x = 8$	
	For $\log_2 x = 2$	
	$ \begin{aligned} x &= 2^2 \\ x &= 4 \end{aligned} $	
	$\therefore x = 4 \text{ or } x = 8$	
30	As x is distance from ceiling , high point at $x = 1.2$ and low point at $x = 1.8$	1 mark for amplitude and
	Hence, amplitude $a = \frac{1.8 - 1.2}{2} = 0.3$	centre of motion
	And centre of motion is at $d = \frac{1.8 + 1.2}{2}$	1 mark for $b=\pi$
	d=1.5 Time taken from high to low is 1s.	1 mark for recognising that
	Hence, $period = 2 \times 1 = \frac{2\pi}{h}$	1 mark for recognising that highest point corresponds to
	<i>b</i>	x = 1.2
	$b = \frac{2\pi}{2}$	
	$b=\pi$	1 mark for finding $t = 1.5$ (or equivalent for the x used for
	Assuming the weight starts ($t=0$) at the centre of motion	the highest point)
1	3 · · · · · · · · · · · · · · · · · · ·	O P /

	Distance from ceiling can be modelled as: $x=0.3\sin(\pi t)+1.5$ Using this model, weight is at high point when $x=1.2$ at $t=1.5$ $2.7+1.5=4.2$ When $t=4.2$ $x=0.3\sin(\pi\times4.2)+1.5$ $=1.676~m~(3~d.~p.)$	1 mark for substituting $t = 4.2$ (or 2.2 or 0.2) (or equivalent for the x used for the highest point) to find answer
	(Note: as period is 2, you could also use $t = 1.5 + 0.7$ or $t = 0.2$)	
31a	$t = 2$ as signed area of $\int_0^t f(x) dx = 0$ when $t = 2$	
b	$t = 4$ as $\left \int_0^t f(x) dx \right $ is largest when $t = 4$	
С	As $f(x)$ is velocity, $f'(x)$ is acceleration. Greatest acceleration is when gradient of the function is greatest. $t=4$	
d	POI POI POI POI SP	Mark lost for each of the following criteria missing - Function is never positive - t-intercepts at 0 and 2 - stationary points at $t = 0,1,2,4$ - greatest displacement at $t = 4$
32	 Original function: y = cos(2a(x - b)) + c New function: y = -c sin(3a(x - b)) Centre of motion at c corresponds to the amplitude of the new function Both functions have been translated horizontally by b Ratio of periods of the original function to the new function: 2a: 3a = 2: 3. Therefore, the new function will sketch 3 periods within the same time that the original function sketched 2 periods. (i.e. 3 periods in 24 boxes or 1 period in 8 boxes) The new function will be a negative sine curve. 	 1 mark for each of the following: Recognises the functions have the same horizontal translation and/or starts the centre of motion of the new function below point P at x = b Sketches a negative sine curve from x = b or x = 0 Matches amplitude of the new function to the centre of motion of the original function New function has period of 8 boxes.

